

Integrated Design & Analysis System (IDAS)

David P. Armstrong EA-C June 27, 2007

Agenda

- IDAS Overview
- Projects Using Relex Applications
- Potential Relex Applications at KSC
- Present Status and Future of IDAS

10 - 15 Minutes

Live Demo

15 – 20 Minutes

What is Integrated Design & Assurance System (IDAS)?

IDAS is:

 A system of integrated, documented, and supported analysis tools (with an optional reporting system) that allow design and assurance engineers to work in a collaborative manner over the life cycle of a system.

IDAS as a system

- Uses "best in practice" software tools.
- Allows KSC engineers to work together any time without face-to-face meetings, e-mail, or paper.
- Reduces the learning demand since the skills learned in one module are transferable to another module.
- Provides tools and techniques that could improve an existing system or support work on a new project.

IDAS as a collection of tools

- Relex software provides a means to analyze and assess a system's technical risk.
- The Relex modules address the qualitative and quantitative dimensions of risk, including Likelihood and Consequence
- The Relex tools can be used by engineers specializing in design, safety, reliability, risk, maintainability, logistics, human factors, cost, quality, and corrective action (sustaining)

Engineering Technical Review

EA-C/Systems Management Office

IDAS Elements and Relationships

In the Area of Risk, Relex Tools Focus on Likelihood, Consequence, or Both

LIKELIHOOD

CONSEQUENCE

Tools

And

Techniques

(quantity)

Engineering Technical Review EA-C/Systems Management Office

One Reason to Use Relex Early

- · Requirements
- · Strategies to Prevent Failure
 - Improve the Design
 - Design for Fault Tolerance
 - Design to be Fail Safe
 - Provide Early Warnings of Failure
- Strategies to Improve Assurance
 - Zero-Failure Design
 - Fault Tolerance
 - Derating
 - Durability
 - Safety Margins
 - Growth Tests
 - Durability Tests
 - Qualification Tests
- · Strategies to Verify Assurance
 - Design Reviews
 - Allocation, Modeling, and Prediction
 - Design FMEA
 - Fault-Tree Analysis
 - Sneak-Circuit Analysis
 - Worst-Case Analysis
 - Statistical (Weibull) Analysis
 - Quality Function Deployment
 - Robust Design

The assurance disciplines give their best punch during the design phase. Thus, "pay me now, or pay me later (via costly change orders)."

- · Strategies to Prevent & Reduce Failures
 - Process FMEA
 - Statistical Process Control
- Strategies to Prove Assurance
 - Environmental Stress Screening
 Tests
 - Production Reliability Acceptance Tests (MTBF Tests)
- Failure (Problem) Reporting, Analysis, & Corrective Action
- Trending (Laplace Test)
- Warranties

Design Manufacture Operate

System Life Cycle Phases (time)

Examples of RELEX used at NASA

<u>Project</u>	Relex Module	Company
Columbia, Entry Analysis	Fault Tree	MFSC & JSC
ISS Crew Health System (CHeCS)	RBD, Weibull	KSC & JSC
Mishap Investigation Boards (Numerous)	Fault Tree	KSC
NSI Cold Firing Analysis	RBD	JPL/NESC/GSFC
Agency Common PRACA Taxonomy (new)	FRACAS	NESC & KSC
KSC Hypergol Oxidizer Storage Facility at Fuel Storage Area #1	Fault Tree	SGS
Integrated Network Control System (INCS) and Safing; Pads & LCC	Fault Tree	USA
30-Ton Bridge Cranes; OPF's 1 & 2	Fault Tree	USA
LO2/GO2 Fuel Cell Servicing System; Pads & MLPs	Fault Tree	USA
60 Hz Low Voltage Power Distribution; Pad A	Fault Tree	USA
KCCS Field Interface Controllers (FIC); Pad A	Fault Tree	USA
Crawler Tread Belt Shoe Failure	Fault Tree	USA
CAPPS/AGV Platform SAA	All Modules	Boeing
Cx Launch Equipment Test Facility (LETF)	Fault Tree, FMEA	ASRC
ATDC Automated Umbilical System; Complex 20 Test Facility	Fault Tree, FMEA	ASRC
KSC Electrical Power System Hazard Analysis	Fault Tree	ASRC
Hypergolic Propellant Loading Hazard Analysis; LC 39B	Fault Tree	ASRC
Environmental Control System (ECS) Hazardous Analysis; LC39B	Fault Tree	ASRC

Relex Can Help Here

- NE lists 10 Major and 73 Minor Subsystems in work, including:
 - Sound Suppression
 - Environmental Control System (ECS)
 - First Stage SRB and CLV US Aft Skirt......
 - Gaseous Helium (GHe), Nitrogen (GN2), and Oxygen (GO2)
 - ➤ Tank Pre-pressurization, Purge, Firex......
 - Hydraulics
 - Hypergolic Servicing
 - Handling and Access
 - Crew Access, SRB Engine Service Platforms, HPU Servicing......
 - Launch Accessories
 - Umbilicals

Status of KSC's IDAS

IDAS Software (Tools)

- Relex Software is now available, owned by KSC, and installed on a secure KSC server
- TechOASIS software (text mining) has been received. Next step is to make the import filters.
- IDAS server backed up on a daily basis
- Upon request, new user can be online with Relex in less than one hour

IDAS Team: Four Individuals offering Full Support

- Two NASA and Two SAIC with training and experience in engineering, assurance, and IT
- Services range from account administration to complete system development
- Relex Technical Support available to all KSC users (phone, email, webinar)

120 Registered Relex users today at KSC (and growing)

- NASA, SAIC, USA, ASRC, Boeing, SGS and SRS
- Early June, 22 users completed a 3-Day on-site Training Course

Status of KSC's IDAS (continued)

Currently:

- Funding for the Relex maintenance plan ends December 2008
- Funding for SAIC's two full-time Application Engineers ends
 December 2007 (contract end date is March 2008)

Future:

For IDAS to continue, it needs a funding mechanism.

Live Demo

* for a full demo in HQ Room 3358, contact the IDAS team at any time.

Tim Adams	NASA	867-2267	
IDAS Project Manager and Designer	NASA		
Dave Armstrong	NASA	861-3976	
IDAS Deputy Project Manager	INASA		
Tony Burris	SAIC	867-7336	
Application Engineer	SAIC	007-7330	
Wayne Fowler	SAIC	867-7334	
Application Engineer	SAIC	007-7334	

Backup Materials

Part Calculation Data

Engineering Technical Review EA-C/Systems Management Office

Relex Reliability Prediction Module

Relex Reliability Block Diagram (RBD) Module

Relex FMEA Module

FMEA V	FMEA Worksheet									
7	Item Identifier	Item Name	Item Description	Mode Identifier	Failure Mode	Local Effect	Next Effect			
1				Mode383	Wall switch fails	Garage door cannot be auto-opened upon command	Garage door cannot auto-opened or auto-closed with wal switch			
2			Mode385	Motor and Drive Failure	Garage door cannot be auto-opened or auto-closed	Garage door cannot auto-opened or auto-closed				
3	Item53	53 GD01	Garage Door Opener	Mode387	Receiver failure	Garage door cannot be auto-opened or auto-closed	Garage door cannot auto-opened or auto-closed			
4			Mode389	Entry keypad failure	Garage door cannot be auto-opened or auto-closed with entry keypad	Garage door cannot auto-opened or auto-closed with ent keypad				
5				Mode390	Remote control fails to open/close correct door	Garage door cannot be auto-opened or auto-closed with remote control	Garage door cannot auto-opened or auto-closed with remote control			

Relex Fault Tree Module

Relex Weibull Module

